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ON THE UNIQUENESS AND STABILITY OF
POSITIVE SOLUTIONS IN THE LOTKA-VOLTERRA
COMPETITION MODEL WITH DIFFUSION

ROBERT STEPHEN CANTRELL AND CHRIS COSNER

1. Introduction. Much attention has been given recently to reaction-
diffusion systems which model the competitive interaction of two or more
organisms allowed to move freely throughout a bounded medium. A partic-
ular model which has been widely investigated (see [7] for references) is the
following Lotka-Volterra system:

11 uy = k1 Au+ ufa — bu — cv]
(11) vy = ko Av + v[d — eu — fu].

The equations are assumed to be satisfied in a cylinder Q x (0, 00), where Q
is an open, bounded smooth domain in R", and are supplemented by linear
boundary conditions on 9 x (0, c0). The solutions to (1.1) represent popula-
tion densities for the competing species. In general, the coefficient functions
in (1.1) are assumed to be nonnegative and smooth on Q x (0,00). They
represent growth rates (a and d), self-regulation (b and f), and competi-
tive interaction (c and e). The diffusion coefficients k; and ko are assumed
positive.

Throughout this article, the coefficient functions shall be taken to
be constant. In this case, if homogeneous Neumann boundary conditions
are imposed on (1.1), substantial progress in understanding the model has
been made. In fact, necessary and sufficient conditions have been given [5]
for the existence of a globally attracting componentwise-positive steady-
state (coexistence state). (Steady states which are identically zero in one
component are referred to as extinction states.) However, if the Neumann
boundary data are replaced by homogeneous Dirichlet boundary conditions,
the level of understanding is somewhat less. Definitive, readily computable
answers to the important questions of existence, uniqueness, and stability
of steady-state solutions to (1.1) do not yet exist. Some progress has been
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made. In [8], Dancer gives a condition which is necessary and sufficient for
existence in a number of cases. However, this condition is acknowledged in
8] to be “complicated and rather implicit.” In the case of equal diffusion
rates and equal growth rates in (1.1), Cosner and Lazer [7] have given
conditions which guarantee the existence of a unique globally asymptotically
stable coexistence state. Valuable perspective on the problem is provided
by the observation by several workers (Blat and Brown [4], among them)
that coexistence states arise as bifurcations from extinction states. This
bifurcation occurs when the growth rates a and d vary while the other
coefficients are held fixed.

In the present article we shall address the question of uniqueness and
stability of component-wise positive steady state solutions to (1.1) in the
case of unequal growth rates. We shall assume that k; and kg are both
equal to 1. By normalizing u and v appropriately (see [6]), we may also
assume that b and f are also both equal to 1. These assumptions yield the
steady-state system

—Au = ufa — u — cv]
(1.2) —Av = v[d — eu — v], in Q
ulaq = 0 = v|asq.

In the context of (1.2), the condition for uniqueness in case a = d may be

stated succinctly: let a > Ay, where A; is the smallest positive eigenvalue
of

—~ A = A in Q
Yv=0 on 011,

and, in addition, let 0 < ¢ < 1 and 0 < e < 1. For the remainder of this
article we assume that 0 < ¢ < 1 and 0 < e < 1. (The constant A; will
appear throughout the paper and will always be as in (1.3).) We should
note that in case 0 < ¢ < lande>1or0<e<1andc>1, there can
sometimes be more than one coexistence state for (1.1) — (1.2). That such
is the case for a = d was established independently in [4] and [7], and when
a # d, in [6].

Let us now briefly describe our approach. Specifically, let us define a
map F : R* x [C2T*(Q)]? — [C*(Q))? by

~Au+u(u+cv—a)
~Av+tuvleutv—d) |’

(1.3)

(14) F(a,d,c,e,u,v) = [
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Here C(Q) denotes the space of Holder continuous functions, where 0 <
a < 1, and C2*(Q) denotes the twice continuously differentiable functions
vanishing on 80 with Holder continuous second partial derivatives. (See
[9].) The linearization of F' with respect to the u — v variables is readily
seen to be

(1.5)
DF|(a,d,c,e,u,v) [so]
(u,v) ¥

_ [(—-A—{-(Qtet:—cv—a)) (_A+(2S@;eu~d))] [‘P].

If F(a,d,c,e,u,v) = 0, where u(z) > 0 and v(z) > 0 on 2, then a mani-
fold of coexistence states to (1.1) exists about (a,d, ¢, e, u,v) provided the
operator DF in (1.5) is a linear homeomorphism between [C5*(()]? and
[C*(Q)]%. In Section 3, after some preliminaries in Section 2, we show that
fa=dand 0<ec<1and0<e<l,suchis always the case. This fact is
used in conjunction with the uniqueness results of [7] enables us to obtain a
uniqueness for result for (a*,d*) “sufficiently close” to the diagonal a = d.
In Section 5, estimates from [6] and [7] (in particular Theorem 2.3 of [6])
enable us to extend (in a — d parameter space) the uniqueness results of
Section 4 for “small” ¢ and e. Moreover, how “small” is “small” is made
rather explicit in our results.

Although we can give explicit conditions insuring uniqueness when
a # d, these conditions are stronger than the requirement 0 < ¢ < 1,
0 < e < 1, which suffices when a = d. We conjecture that this last condition
is sufficient even if a # d, but so far have not been able to find a proof.

In Section 5, we obtain stability of the unique steady state described
in Sections 3 and 4. In obtaining the invertibility of DF we show that
in fact the first eigenvalue of DF is positive; we then use upper and lower
solutions for (1.1) constructed from eigenfunctions of DF' to obtain stability
via a comparison principle. The general approach is similar to that taken
in [11]; comparison principles and upper/lower solution methods for (1.1)
and (1.2) are discussed and further references are given in [7].

The system (1.1) models the interaction of two species which diffuse
through an environment 2 and compete with each other for resources. The
condition u = v = 0 on 0f2 corresponds to a completely hostile environment
outside 2. The biological implications of our results are essentially that if
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each species can exist in the absence of the other and if the interactions
between the two species are sufficiently weak, then the species can coexist
and there is a unique, stable coexistence state. Further, we can give bounds
which are sufficiently explicit to permit numerical approximation on the
allowable ranges of interaction parameters. Our results sharpen and extend
sorme of those obtained in [7] by giving different and/or weaker conditions
on the parameters under which the system (1.1) will have a unique and
stable coexistence state. Our attempt to give sharp and explicit conditions
on the allowable parameter ranges is motivated largely by the importance
of such information in relating the model to applied problems.

2. Some technical preliminaries. Suppose @ C R is a smooth, bound-
ed domain. For p = 1,...,n, let L# be the strongly, uniformly elliptic
differential operator given by

N 2U Zz o U
Du(e) = = 3 dy(e) g + D b @) () + ¢ o)ulo)

where the coefficient functions are assumed of class C*(Q) for some o €
(0,1) and ¢* > 0 on ). Now consider the eigenvalue problem

(2.1) (L+M)E =27, z€Q
where
Ll 901
L= , M= (mij(w))?,jzl’ v = I
L™ "

subject to the boundary conditions
(2.2) : pH(z) =0 for z € ON.

LEMMA 2.1. Suppose m;; € C*(Q) fori,j = 1,...,n. Then if m;; < 0 for
i # jand )i ;mi; 2 0fori=1,...,n, (L+M)™" exists and is a compact
positive operator on [C§(Q)]". Furthermore, if M (z) is irreducible for some

t € (), where
b ifi g,
Thij={mj IZ#J
0 ifi=7j.
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(2.1) — (2.2) has a smallest positive eigenvalue A and a corresponding
eigenfunction @ with ¢*(z) > 0 for z € Q.

ProoF: The maximum principle for elliptic systems [13, pages 188-192],
guarantees that (L 4+ M)~ exists and is a positive operator on [C§(2)]".
Compactness follows from standard a priori estimates [1] and embedding

theorems [9]. If M(z) is irreducible for some z € Q, the maximum principle
guarantees that if

L+M)T =7

W laq =0,
and f# > 0on O but f # 0, then u*(z) >0forz € Q and p = 1,...,n.
Theorem 2.5 of [10] may now be employed to assert that (L + M)~! has

positive spectral radius p((L + M)~!). The Krein-Rutman Theorem [3]
guarantees that A\ = 1/p((L + M)™1!) is the required eigenvalue. That the

corresponding eigenfunction @ is as described follows from the maximum
principle.
Recall that the linearization of (1.2) at (a,d, ¢, e, u,v) is given by
o| _ [(—A+(2u+cv—-a)) cu 7
ey 1|5]=] e (~A+@v+eu—d)] 4]
Consider the eigenvalue problem

= o[y =03

where ¢ and ¢ are requried to vanish on 02. If we make the substitution
0 = —p, (2.4) is equivalent to

—Ac+QRQu+tcw+ K)o—cup=(A+a+ K)o

2.5
(2:5) A —evo + (2vt+euta—d+ K)p=(A+a+ K)p.
If we let A
— 0
= (3 )
and

M= 2u 4 cv 4+ K —cu
- —ev wteut+a—-d+K /)

the hypotheses of Lemma 2.1 are satisfied for some K > 0. We have now
established
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PROPOSITION 2.2. IfT is given by (2.3), then the eigenvalue problem (2.4)
has a smallest eigenvalue A and a corresponding eigenvector ;‘Z with
p(z) < 0 < YP(z) for all 2 € Q.

3. The case a = d. We now show that if T' is as given in (2.3), a = d > Ay,
and 0 < ¢, e < 1, then T is invertible, and in fact has a strictly positive
first eigenvalue. Note that (2.5) is equivalent in this case to

—Ao + (2u+ ew)o — cuyp = (A +a)o

(3-1) —Ay — evo + (2v + eu)p = (A +a)y.

Now fix a = d > A; and c¢g, €9 with 0 < ¢p, €9 < 1. Let ¢(t) = ¢t and
e(t) = ept, for t € [0, 1]. Then there is a unique positive solution [7] to (1.2)
at (a,a,c(t),e(t)) given by

_1—c(2) _1—e(t)
v = Tomem? W= T e

where 6, is the unique positive solution of

(3.2) ~Au+u®—au=0 inQ
’u,laQ = 0.

= (0 )

_ (2u@) +c(t)u(t) —c(t)u(t)
M(t,z) = ( —e(t)u(t)  2u(t) +e(t>“(t)> '

Consider

(3.3)

If ¢ € (0,1], Lemma 2.1 may be employed to assert the invertibility of
L+ M(t,z). If t = 0, it follows from the invertibility of —A + 26,. Since
M(t,z) = M(t)8.(z), where m;;(t) are smooth functions of ¢ on [0,1],
Lemma 2, [12] implies that p((L+M (t,z))~!) and hence the first eigenvalue
of (3.1) are continuous functions of ¢ on [0,1].
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Notice that §, is an eigenfunction for

—Au+0,u=au in

(3.4) u =0 on Of).

A comparison with (3.4) shows that the first eigenvalue for

—Au -+ 20,u = pu in
u=~0 on 892

is necessarily greater than a. It follows that p((L + M(0,z))~!) > 0. The
results of [12] now guarantee that if ;(¢) denotes the smallest positive eigen-
value of

(3.5) M) |5t = u) [ 3],

where L and M(t,z) are as in (3.3), then u(t) and hence A(f) = u(t) —a
vary continuously with .

We now claim that A(t) > 0 for ¢t € [0, 1]. Observe that A(0) > 0. Since
A(t) is continuous in ¢, if the claim is not valid, there is a first ¢; € (0,1]
such that A(¢1) = 0. At ¢;, we have

—-AO’tl -+ (2’11.1] —_ C(tl)vtl — a) gy c(tl)utl thl =0

3.6
(3.6) —Athy, — e(t1)vy, 04 + (2uy;, + e(t1)uy, — a) Py, =0,

where uy,, vy, satisfy

—Auy, + (ug, +c(t1)vy, —a)uy, =0

3.7
(3.7) —Awvy, + (vy, + e(t1)uy, —a) vy, = 0.

Consider the first equations of (3.6) and (3.7). Multiply the first equation of
(3.6) by uy, and the first equation of (3.7) by o4,. Then integrate over 2 and
subtract. Integration by parts and the Dirichlet boundary data guarantee

that
/ Uty (—Aail) = / 01y (—Auh) .
Q Q
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Consequently,
/uf}o‘tl — c(tl)/ U%ﬂ/’t] = (.

Q Q

But now
U = 1- C(tl)
N 11— c(tl)e(tl) @

whence
(3.8) / 6201, — c(ty) / 6245,, = 0.

Q Q
A similar argument with the second equations of (3.6) and (3.7) will give
(3.9) / 024y, — e(tr) / 6201, = 0.

Q Q

Since 0 < t; < 1, Lemma 2.1 guarantees that o4, > 0 on Q and that ¢;, >0
on ). Therefore

/92@1 > 0 and /02%1 > 0.
Q Q

It follows from (3.8) — (3.9) that

§ - oo}

1 _‘C\Ll} .

ety 1|0

Hence c(t1)e(t1) = 1. But c(t1)e(t;) = t3coeq < cpep < 1, since 0 < ¢p < 1
and 0 < ep < 1. This contradiction establishes the following result.

THEOREM 3.1. Supposethata =d > A\ andthat0 <c<land0O<e< 1.
Then if T is as given by (2.3), the first eigenvalue of T is positive. In
particular, T is invertible.

Theorem 3.1 allows us to give a uniqueness result for (1.2) as follows.

THEOREM 3.2. Suppose ag > Ay and let 0 < ¢g < 1 and 0 < eg < 1.
Then there is a neighborhood V' of (ag,ao) in R* and a C'-map F' : V —
[Ca+*(Q0)]? such that the following are equivalent:

i) (u,v) € [C2+*(R)]? with u(z) > 0 and v(z) > 0 for z € Q,
(u,v) satisfies
—Au

—Av = v[d — egu — v],

ula — u — cov]

(3.10)
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and (a,d) € V.
(i) (u,v) = F(a,d).

ProoF: Theorem 3.1 and the Implicit Function Theorem guarantee that
there is a neighborhood W of (ap,a0) in R? and a Clmap F : W —
[CET*(Q))? such that (a,d, F(a,d)) is a componentwise positive solution to
(3.10). If the conclusion of the theorem is false, there exist sequences

{(amdnaunavn)}zc;l >{(anadn7u:n’u:)}:°=1 €W x (Cg+a(ﬁ))2

with un,u},vs, v} positive on Q, (un,vn) # (ul, vp), and (an,dn) —
(ao,ag). From [7], u, < a, on Q and v, < d, on Q, and likewise for
uy, and v};. Standard a priori estimates and embedding theorems for ellip-
tic equatlons guarantee that in fact {(un,vn)}32; and {(u},v})}o2; are
bounded sequences in [C53T*(Q)]2. By compactness, we may choose a sub-
sequence {(an;,dn;)}i2; of {(an,ds)}52; such that (u,,,v,;) — (%,7) and
(uf,,vh,) — (u*,v*) in [C3T*(Q )] Furthermore (@,7) and (u*,v*) solve
(3.10) with @ = d = ao, and T, T, u*, v* are all nonnegative. Since 0 < ¢y < 1
and 0 < eg < 1, from [6], we know that (a0, ap) is not a point of bifurcation
from extinction to coexistence states. Therefore [7] implies that

<v,v>=<u*;v*>=< L= 5 1-6 ea).

1-— Co€o 1 - Cp€o

Since
(unﬂvni) # (u:ﬁv:&,') H

we have violated the Implicit Function Theorem. This contradiction estab-
lishes the result.

4. The general case. We now consider the invertibility of the operator T
in (2.3) for general a and d. We begin by expressing T as

(4.1)

7% = —A4+2utcv-—-a 0 ®
- 0 ~A+2vteu—d| |y

ML
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Observe that if u > 0 on Q and if
(-A+2u+cv—a)h=Ah  inQ,

where h > 0 in Q and h = 0 on 012, then

/u(—Ah)+/2u2h+/ciwh—/auh:A/uh.
Q Q o) 0 Q

From integration by parts and the fact that (u, v) solves (1.2) it follows that

[ o, [ . [

f/ 2 \1 21 7 B [ 7
I/QKCL'U,—'U, —cuv)n jQU /?,'-i—‘/ﬂ CUUI’L—-'/Q aqu=AjQ Ui,

which implies
/ u?h = A / uh.

Hence A > 0 and (—A + 2u + cv — a)~! is a compact positive operator and
similarly for (~A + 2v + eu — d)~!. Thus we have established

PROPOSITION 4.1. T : [C5T(Q)F — [C*(Q)}? is invertible if and only if
So7T- (~A+2u+cv—a)? 0 0 cu
- 0 (-A+2v+eu—d) 1| |ev 0

is an invertible operator on [C2+*(Q))2.

REMARK: Once again an appeal to the a priori estimates and embedding
theorems of the theory of elliptic partial differential equations [2, page
929], allows us to view S as an operator on [CJ(Q)]?. Let us denote by
| || the usual supremum norm on C3(Q) and as norm on [C§(2)]?, we take

‘H m = || fll + llg|| for ( ) € [CoE)].

It is a standard result of functional analysis that S is invertible pro-
vided |||I — S||| < 1. A simple observation shows that such is the case
provided

(4.2) lle(=A +2u+cv —a) *(u)]| < 1
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and
(4.3) lle(=A +2v+ eu — d) (v < 1.

We obtain conditions on a, d, ¢, and e which guarantee (4.2) and (4.3).
Observe that by the generalized resolvent formula we may write

e(—=A+2u+cv—a)”?
=c(—A+20, —a)™!

+ef(~A+2u+cv—a)t — (—A+ 20, —a)7 Y
=c(~A+20, —a)™?

+c[(=A + 2u +cv — a)71(20, — 2u — cv)(—A + 20, — a) 1.

It follows that

lle(=4A + 20, — a) 7|

—A —a) Y <
o=+ 2utev=a) Tl < T 5y u = oA T (A + 20, )T

so long as

1
(=& + 200 — a)7H|’

(4.4) 126, — 2u — cv|| <

It follows from [6, Lemma 1.1} that u < 6, and by monotonicity of || || that
llu]l < ||6.]l- Hence if (4.4) holds, (4.2) is valid so long as

[10a]l llc(=A + 200 — )|

(4.5) 1= 26, — 2u— co]| (=B + 20, —a)-1]]

1

or equivalently

1

(4.6) 126, — 2u — cv]| + ¢||8.]] < CA ¥ 26, — o]

Proceeding analogously for (4.3), we see that (4.3) holds if

1

4.7 204 — 2v — eul| + e]|04]| < .
(4.7) 11264 ul| + ef|6a]| (=2 + 26, — &)1




352 ROBERT STEPHEN CANTRELL and CHRIS COSNER
PROPOSITION 4.2. If (u,v) is a componentwise positive solution and T' is
as given in (2.3), then T is invertible if (4.6) and (4.7) hold.

Consider now (4.6) and (4.7) in case A\; < d < a. In this situation, [6,
Theorem 2.3] implies that

l1-c
v < min{ 1-c ea,ed}

1l—ce

(4.8)

{ 1_669‘1 <u<éb, and

for any positive solution (u,v) of (1.2). Now let A\; < dy < d < a < ao.
Define Iy = K4,,4, by

(4.9) Koydp =  sup @i
do SdSaSag d

If \; is the first eigenvalue of —A with Dirichlet boundary conditions on €2,
and ¢; > 0 is the corresponding eigenfunction, normalized with sup ¢; = 1,
and T satisfies —A7 =1 in Q, T|aq = 0, then from [7] we have the bound

Ko < ma.x{ag/él,)\l(ag — M)} SUD ’r(x) < oo.

- do — A1 zef P1{T)

Note that (4.8) and (4.9) imply that
u < Koby.
Consequently, if 1 — eKy > 0, Lemma 1.1 of [6] implies that
(4.10) (1-eKp)0y <,

since (1 — eKy)fq solves

—Aw =w[d — eKyq — w] in O
w >0 in
w=0 on O9.

(If 1 — eKo < 0 then (4.10) is trivially satisfied.)
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From (4.8) we have

2(1 —
(4.11) 200 — 20— cv < 20, — 2E= Vg
. 1—ce
_ 2e(1— e) 6,
1—ce
and also
1—
(4.12) 20 — 20— cv > 20, — 20, — C:) 9,
_ —c(1—e) 0.,
1 —ce
Combining (4.11) and (4.12) shows that
2c(1—¢e)
—Qu — <[22 o
1262 = 2u = col + el < (52 <)
3c — 2ce — c%e
i P L
Consider (4.7). From (4.8) and (4.10),
(4.13) 0 < 204 — 2v < 2eKof4.
Hence

1264 — 20 — eull + elfull < 1204 — 20]| + elful] + e}l
< 2elo||04] + eKo|0a| + €]|6a]] by (4.13)
< e(3Kp + 1)||04]]-

Thus we have established the following theorem.

THEOREM 4.3. Suppose that (u,v) is a componentwise positive solution tc
(1.2), \1<dy<d<a<ap0<c<land0<e<1l. Thenif

3¢ — 2ce — c%e 1

4.14 <

(4.14) 1= ce (=2 + 28, — a)~][ - [6a]]
and

(4.15) e(3Ko +1) < =

(=& + 264 — d)=*|| [|6a]|”
where Ky is given by (4.9), the linearization T of (1.2) at (u,v) is an in-
vertible operator from [CaT*(Q)]? to [C*(R)]2.

We may now extend Theorem 3.2. We begin with the following lemma.
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LEMMA 4.4. The map a — (—A+20, —a)~! is a continuous  function from
A1, 00) into B(CY(R2)), the bounded linear operators on C{(2).

PROOF: From the results of [6] and [7], we know that the map a — 6, is
ontinuous from (A1, 00) into C§(f2). The result now follows via the resol-
rent formula and the results of [12].

THEOREM 4.5. Let A\ < dg < ag. Let

B = min - '
[dosa0] = do<a<ay ”("“A + 20, — a)_ln ”9‘1” .

suppose that 0 < ¢ < 1,0< e <1 and, in addition,
4.16) do > A1(eba, ),

where \;(ef,) is the first eigenvalue for the problem

—AYp+elfh =Xy in§)
Y=0 ond,

3¢ — 2ce — c?e

:417} 1 — ce < B{do,aol
and
[4.18) 6(3If0 + 1) < B[do,ao]'

Let Vigy,a0) = {(a,d) : do < d < a < ap}. Then there is a C'-map
F': Vid,a0) = [C3*(Q))? such that the following are equivalent:
G) (u,v) € C2**(M)]? with u(z) > 0 and v(z) > 0 for z € Q,
(u,v) satisfies
4.19) —Au = ufa — u — ¢y}
—Av = v[d — egu — v],
(a,d) € Vidy aq), and co, eq satisfy (4.16) — (4.18).
(i) (u,v) = F(a,d).
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Furthermore, the first eigenvalue for T' is positive for (u,v) = F(a,d) with
(a,d) € V]do,uo].

REMARK: Bjg, q, < o0 by Lemma 4.4.

ProoF: Condition (4.16) guarantees that there is no bifurcation from ex-
tinction to coexistence states in Vig, q,] for (co,€0). The existence of F' now
follows from Theorem 3.2, Theorem 4.3, and the Implicit Function Theorem.
Suppose now there exist (a*,d*) € V4, ,q4,) 20d (u,v) € C5T*(Q)]? such that
u(z) > 0 on Q, v(z) > 0 on Q, (u,v) solves (4.19) and (u,v) # F(a*,d*).
Note that for any (a,d) € V4,,4,] and for any componentwise positive
solution (u,v) to (4.19) at (a,d), u < ap and v < ag. Theorem 4.3 and
the Implicit Function Theorem may be employed to assert the existence of
a Cl-function g : (d*,a*) — [CaT*(Q)]? such that g(d) is a component-
wise positive solution to (4.19) at (a*,d). g(d*) # F(a*,d*) by assump-
tion. However, Theorem 3.2 implies that g(d) = F(a*,d) for d > d, where
d* < d < a*, a contradiction to the Implicit Function Theorem, which es-
tablishes the equivalence of (i) and (ii). To see that the first eigenvalue for
T is positive for (u,v) = F(a,d) when (a,d) € Vjg,,q,]» Observe that since
0 <c<1land0 < e < 1, Theorem 3.1 implies that the first eigenvalue
for T is positive when a = d; also, it depends continuously on a, d, u, and
v. Hence, since T is invertible for (u,v) = F(a,d) the first eigenvalue can
never pass through zero and hence must remain positive as (a,d) varies in
Vv[dg ,ag]*
REMARK: By placing restrictions (conditions (4.17) and (4.18)) on the sizes
of ¢ and e, Theorem 4.5 enables us to guarantee the extension of the unique
solution manifold for (1.2) from the diagonal a = d in a quantifiable manner
which separates conditions on ¢ and e from those on a and d. Condition
(4.16) is used only to guarantee that u and v remain positive and hence
that (—A 4+ 2u+cv —a)! and (~A + 2v + eu — d)~! exist. With slightly
more care in the statement of Theorem 4.5, this condition can be eliminated.
The last argument in the proof of Theorem 4.5 has the further im-
plication that we can extend the unique solution manifold until the first
eigenvalue for the linearized system becomes zero. The positivity of the
first eigenvalue is intimately related to the stability of the solution; this
relationship is described explicitly in Theorem 5.2 in the next section. Loss
of positivity of the first eigenvalue of the linearization of an equation or sys-
tem often coincides with loss of stability and with bifurcation, so we cannot
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renerally expect uniqueness unless the first eigenvalue is positive.

We now conclude this section with an alternate approach to the invert-
bility of T' of (2.3) in the general case. These results should be compared
with those of [7, Section 4].

Suppose that A is the first eigenvalue for

~Ap+ (2u+cv —a)p + cup = A

'4.20
‘ ) —AY +evp+ (2v+ eu—d)Yp = M.

Since the first eigenvalue of —A + (u + cv — a) is zero, and the same for
~A + (v + eu — d), we have

/Q IVl + (u+ cv — a)p?] 2 0

(4.21)
‘ /Q (|v¢]2 + (v+eu— d)z/)2] > 0.
From (4.20),
[ 1962 + (u+-cv = a)g? +cupp] = |
(4.22) & &

J I99P + evp+ 20+ eu— )] = [ 42,
Q Q
Combining (4.21) and (4.22)

/Q [ug? + cugip] < A /Q #

and

‘/Q{evtpw+mp2] g/ﬂ)«p?.

Consequently,

(4.23) ./s; [up® + (cu + ev)py + vy?] < )\/Q [¢% + 7] .
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The quadratic form in (4.23) is positive definite on © (and hence A > 0 and
T is invertible) if

(4.24) vy — %[cu + ev]? > 0.

Condition (4.24) can be established using bounds on ratios of 6, and 6, in
regions where the appropriate bounds on v and v are available. Specifically,
using (4.8) and (4.10) in (4.24) shows that if the inequality

4(1 —¢)(1 — eKyp)

4.2
( 5) 1—ce

> (cKp + e)?

is satisfied then (4.24) must hold. Thus we have the following:

THEOREM 4.6. Suppose that (4.25) holds. Then the first eigenvalue of T
is positive and thus T is invertible.

5. Stability. Given the existence and uniqueness of a coexistence state for
(1.1) it is natural to inquire about the stability properties of that state. We
assume that k; = ks = 1 and that (1.1) has been normalized to have the
form
Uy — Au = ufa — u — cv]
— Av=v[d—eu—1v] on € x(0,00)
Ulanx(o,oo) =0= Ulanx(o,oo)

“ls‘ix{o} = uo (), Ulﬁx{o} = vp(x).

(5.1)

It follows from standard results in the theory of reaction-diffusion systems
that (5.1) has a unique classical solution for any ug, vy € C*({1); see [7] and
the references cited there. We shall need the following comparison result,
which is a special case of the results of Section 1 of [7]:

LeMMA 5.1. Suppose that (O and ug,vy are C? in x and C* in t on
2 x (0, 00) and continuous on Q X [0,00) and satisfy

5. 2) — Auy — ug [a — ug — bug] > ugy — Aug — ug [a — ug — busg]
vig — Avy — vy [d — euy — v1] < Vg — Avg — vo [d — eus — vq] in Q,

uy > up and vy < vy on [Q x {0} U [69 x (0, 00)].
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Then u; > ug and v; < vy on Q x [0, 00).

By applying Lemma 5.1 with appropriate comparison functions con-
structed from the coexistence state and the eigenfunctions for T' we obtain
the stability of our steady states with respect to C} perturbations. Our
method is closely related to that used by Hess in [11].

THEOREM 5.2. Suppose that the hypotheses of one of Theorems 3.1, 4.5,
or 4.6 are satisfied, so that (5.1) admits a unique coexistence state and the
first eigenvalue of T' is positive. Let (u*,v*) denote the coexistence state and
let A > 0 denote the first eigenvalue for T'. For any € € (0, A1), there exists a
§ > 0 such that if (u,v) is a solution to (5.1) with (ug,vo) € [C§(Q)]? with

(5.9) (", 0*) = (o, ) gz e < &
then

l|(u,v) = (U*av*)”[c(ﬁ)]z =0
exponentially with order —e as t — oo.

REMARK: Once we know that (u,v) — (u*,v*) in [C(Q)]* we can use
parabolic regularity results to obtain convergence in stronger norms.

PRrOOF: Let [z} be an eigenvector for (2.4) normalized by

max {sup |#], sup |wl} =1
Q a

Let

u* + 7e~et¢’ v* + ,Ye~et¢

v
u¥ — 'ye"":‘tqﬁ, T=vu* — ,Ye—-et,l'b_

u
u

(Recall that we may choose ¢ > 0, 1 < 0 in €2, so that v < T and v < T.)
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We have in © x (0, 0]

(5.4) Uy — AU~ Tla — T — cy]
= —eve” P — Au* —ye AP
— (u* +7ve™%¢) [a — u* — ve "¢ — cv* — ye ]
= —eye ¢ — [Au* +u*(a — u* — cv¥)]
+7e” [-Ag + (2u* + cv* — a) + cu*eY]
+7e [y ¢ + ve ey
=ye g [—e+ A+ ce P+ ye ]
>ye"gA—e—cy] 20
provided € < A and v < (A — €)/c. Similarly, we have in Q X (0, o]
(6.5)
Y, — Ay — v[d — €T — v] = ye™"P [A — e+ ve~"ed + ye )]
<ve P —e—9] <0

provided € < A and 7 < A — €. Analogous computations show that if € < A,
v7<A—¢ and 7 < (A —¢€)/e, then

(5.6) U~ Au—ula—u—cv] <0
and
(5.7) T, — AT — 7]d — eu — 7] > 0.

By construction we have T = u = 7 = v = 0 on 80 X [0,00]. By the
hypotheses of Theorem 3.1, 4.5, or 4.6, ¢ < 1 and e < 1, so we need only
€ < X and 7 £ X — €. Suppose that u,v satisfy (5.1) with

uw—A—e)p<ug<ur+(A—e)d

(5.8) v+ (A — ) <vp < vF — (A= ).

Then we have u < v <@, v < v < T on [ x {0}] U [0 x [0,00)] and by
(5.4) — (5.7) and (5.1) we have in Q x (0, 00)

Uy — AT —Tla — T — cv] > uy — Au — ufa — u — cv]

v — Ay —v[d — et —v] < v, — Av —v[d — eu — v]
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and

U, — Au—ufa —u— ¥ < uy— Au—ula — u — cv]

Ty — AT —9[d — ey — U] > vy — Av — v[d — eu — v].

Thus, by Lemma 5.1, we have v < 4 < Tand v < v < T in Q2 x [0,00).
Hence (u,v) — (u*,v*) exponentially as ¢ — oo provided (5.8) holds. The
inequalities (5.8) give an estimate on the size of the region of attraction of
(u*,v*). It follows from arguments based on the strong maximum principle
that ¢ > 0in Q and 9¢/0n < 0 on 99, with 1 < 0 in Q and 9y /0n > 0 on
0%1; thus, if

P TR Y /-

Hy RN £ A .
1887, v — (o, Yo)lijca @y

is sufficiently small, we have (5.8).
(For a detailed discussion of such arguments, see for example [7].) This
completes the proof of Theorem 5.2.
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